TERRAMETRA

LINEAR EQUATIONS

Terrametra Resources
Lynn Patten

EQUATIONS

- Basic Terminology
- Linear Equations
- Identities, Conditional Equations, and Contradictions
- Solving for a Specified Variable
(Literal Equations)

BASIC TERMINOLOGY

An equation is a statement that two expressions are equal.

$$
x+2=9 \quad 11 x=5 x+6 x \quad x^{2}-2 x-1=0
$$

To solve an equation means to find all numbers that make the equation a true statement. These numbers are the solutions, or roots, of the equation. A number that is a solution of an equation is said to satisfy the equation, and the solutions of an equation make up its solution set.

Equations with the same solution set are equivalent equations.

Let $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} represent real numbers.

$$
\text { If } \boldsymbol{a}=\boldsymbol{b} \text {, then } \boldsymbol{a}+\boldsymbol{c}=\boldsymbol{b}+\boldsymbol{c} .
$$

The same number may be added to each side of an equation without changing the solution set.

Let $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} represent real numbers.

$$
\text { If } \boldsymbol{a}=\boldsymbol{b} \text { and } \boldsymbol{c} \neq \mathbf{0} \text {, then } \boldsymbol{a} \boldsymbol{c}=\boldsymbol{b} \boldsymbol{c} .
$$

Each side of an equation may be multiplied by the same nonzero number without changing the solution set.

LINEAR EQUATIONS (First Degree Equations)

A linear equation in one variable is an equation that can be written in the form

$$
a x+b=0
$$

Where \boldsymbol{a} and \boldsymbol{b} are real numbers with $\boldsymbol{a} \neq \mathbf{0}$.
Linear equations

$$
\begin{array}{cc}
3 x+\sqrt{2}=0 & \sqrt{x}+2=5 \\
\frac{3}{4} x=12 & \frac{1}{x}=-8 \\
0.5(x+3)=2 x-6 & x^{2}+3 x+0.2=0
\end{array}
$$

Nonlinear equations

A linear equation is also called a first-degree equation since the greatest degree of the variable is 1.

Example 1

Solving a Linear Equation

1(a) Solve: $3(2 x-4)=7-(x+5)$

Be careful

 with signs.Solution:

$$
\begin{array}{rlrl}
6 x-12 & =7-x-5 & & \text { Distributive property. } \\
6 x-12 & =2-x & & \text { Combine like terms. } \\
6 x-12+x & =2-x+x & & \text { Add } x \text { (both sides). } \\
7 x-12 & =2 & & \text { Combine like terms. } \\
7 x-12+12 & =2+12 & & \text { Add } 12 \text { (both sides). } \\
7 x & =14 & & \text { Combine like terms. } \\
\frac{7 x}{7} & =\frac{14}{7} & & \text { Divide by } 7 \text { (both sides). } \\
7 x=2
\end{array}
$$

Example 1

Checking the Solution

Check:

$$
\begin{aligned}
3(2 x-4) & =7-(x+5) \quad \text { Original equation. } \\
3(2(2)-4) & \stackrel{?}{=} 7-((2)+5) \text { Let } x=2 .
\end{aligned}
$$

Checking the solution is recommended.

$$
3(4-4) \stackrel{?}{=} 7-(7) \quad \text { Simplify } .
$$

$$
0=0
$$

True.

The solution set is $\{2\}$.

Example 2

Solving a Linear Equation with Fractions

2(a) Solve: $\frac{2 x+4}{3}+\frac{1}{2} x=\frac{1}{4} x-\frac{7}{3}$
Solution: Multiply by $\mathbf{1 2}$ (the LCD of the fractions).
Distribute the $\mathbf{1 2}$ to all terms within parentheses.

$$
\begin{aligned}
12\left(\frac{2 x+4}{3}+\frac{1}{2} x\right) & =12\left(\frac{1}{4} x-\frac{7}{3}\right) \\
12\left(\frac{2 x+4}{3}\right)+12\left(\frac{1}{2} x\right) & =12\left(\frac{1}{4} x\right)-12\left(\frac{7}{3}\right) \\
4(2 x+4)+6 x & =3 x-28
\end{aligned}
$$

Example 2

Solving a Linear Equation with Fractions

Solution (cont'd):

$$
\begin{aligned}
4(2 x+4)+6 x & =3 x-28 & & \\
8 x+16+6 x & =3 x-28 & & \text { Distributive property. } \\
14 x+16 & =3 x-28 & & \text { Combine like terms. } \\
11 x+16 & =-28 & & \text { Subtract } 3 x \text { (both sides). } \\
11 x & =-44 & & \text { Subtract } 16 \text { (both sides). } \\
x & =-4 & & \text { Divide by } 11 \text { (both sides). }
\end{aligned}
$$

Example 2

Checking the Solution

Check:

$$
\begin{aligned}
\frac{2(-4)+4}{3}+\frac{1}{2}(-4) & \stackrel{?}{=} \frac{1}{4}(-4)-\frac{7}{3} & & \text { Let } x=-4 . \\
\frac{-4}{3}+(-2) & \stackrel{?}{=}-1-\frac{7}{3} & & \text { Simplify. } \\
-\frac{10}{3} & =-\frac{10}{3} & & \text { Simplify. } \\
0 & =0 & & \text { True. }
\end{aligned}
$$

The solution set is $\{-4\}$.

IDENTITIES CONDITIONAL EQUATIONS CONTRADICTIONS

An equation satisfied by all numbers that are meaningful replacements for the variable is an identity.

$$
3(x+1)=3 x+3
$$

An equation that is satisfied by some numbers, but not others, is a conditional equation.

$$
2 x=4
$$

An equation that has no solution is a contradiction.

$$
x=x+1
$$

Example 3

3(a) Determine whether the equation is an identity, a conditional equation, or a contradiction.

$$
-2(x+4)+3 x=x-8
$$

Solution: $\quad-2 x-8+3 x=x-8 \quad$ Distributive property.

$$
\begin{aligned}
x-8 & =x-8 & & \text { Combine like terms. } \\
0 & =0 & & \text { Subtract } x \text { and add } 8 .
\end{aligned}
$$

When a true statement such as $0=0$ results, the equation is an identity, and the solution set is \{all real numbers\}.

Example 3

3(b) Determine whether the equation is an identity, a conditional equation, or a contradiction.

$$
5 x-4=11
$$

Solution:

$$
\begin{aligned}
5 x & =15 & & \text { Add } 4 \text { (both sides). } \\
x & =3 & & \text { Divide by } 5 \text { (both sides). }
\end{aligned}
$$

This is a conditional equation, and its solution set is $\{3\}$.

TERRAMETRA

Example 3 Identifying Types of Equations

3(c) Determine whether the equation is an identity, a conditional equation, or a contradiction.

$$
3(3 x-1)=9 x+7
$$

Solution:

$$
\begin{aligned}
9 x-3 & =9 x+7 & & \text { Distributive property. } \\
-3 & =7 & & \text { Subtract } 9 x \text { (both sides). }
\end{aligned}
$$

When a false statement such as $-3=7$ results, the equation is a contradiction, and the solution set is the empty set or null set, symbolized by \{ \} or \varnothing.

IDENTIFYING TYPES of EQUATIONS

If solving a linear equation leads to a true statement such as $0=0$, the equation is an identity. Its solution set is \{all real numbers \}.

If solving a linear equation leads to a single solution such as $x=3$, the equation is conditional.

Its solution set consists of a single element.
If solving a linear equation leads to a false statement such as $-3=7$, the equation is a contradiction.

Its solution set is $\}$ or \varnothing.

SIMPLE INTEREST FORMULA

A formula is an example of a linear equation (an equation involving letters). This is the formula for simple interest.

$I \mathrm{smos} \rightarrow I=$ Prt $\simeq \mathrm{tbmo}$ variable for simple interest

> variable for dollars
variable for years

ACCUMULATED VALUE FORMULA

This formula gives the future value, or maturity value, \boldsymbol{A} ("the accumulation") of \boldsymbol{P} dollars ("the principle") invested for \boldsymbol{t} years at an annual simple interest rate \boldsymbol{r}.
 r is the variable for annual simple interest rate

Example 4

Solving for a Specified Variable

4(a) Solve for t :

Goal: Isolate t on one side.

$$
I=\operatorname{Pr} t
$$

Solution:

$$
\begin{aligned}
& \frac{I}{P r}=\frac{P r t}{P r} \quad \quad \text { Divio } \\
& \frac{I}{P r}=t \quad \text { or } \quad t=\frac{I}{P r}
\end{aligned}
$$

Divide by Pr (both sides).

Example 4

Solving for a Specified Variable

4(b) Solve for \boldsymbol{P} :

$$
A-P=P r t
$$

Goal: Isolate P (the specified variable)

Transform so that all terms involving P are on one side.

$$
\begin{aligned}
& A=P(1+r t) \quad \\
& \frac{A}{1+r t}=\frac{P(1+r t)}{1+r t} \quad \begin{array}{l}
\text { Factor out } P . \\
\frac{A}{1+r t}
\end{array}=P \quad \text { or } \quad P=\frac{A}{1+r t} \\
& \text { (both sides sy } 1+r t .
\end{aligned}
$$

Example 4

Solving for a Specified Variable

4(c) Solve for x :

$$
3(2 x-5 a)+4 b=4 x-2
$$

Solution: $6 x-15 a+4 b=4 x-2$ Distributive property.

Isolate the \boldsymbol{x}-terms on one side.

$$
6 x-4 x=15 a-4 b-2
$$

Combine like terms.

$$
2 x=15 a-4 b-2
$$

Divide by 2 (both sides).

$$
x=\frac{15 a-4 b-2}{2}
$$

